Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense.
نویسندگان
چکیده
The plant-associated nitrogen-fixing rhizobacterium Azospirillum brasilense attracts world-wide attention owing to its plant growth-promoting activities. Among hundreds of its strains known up to date, wild-type strain Sp245 has been proved to be capable of colonising both the plant-root interior and exterior (i.e. a facultative endophyte), whereas others are non-endophytes colonising the root surface only. Thus, the different ecological niches occupied by these strains in the rhizosphere suggest that their responses to environmental conditions might differ as well. In this study, responses of A. brasilense strains Sp245 and Sp7 to several heavy metals (Co2+, Cu2+, Zn2+), present in the medium at tolerable concentrations (up to 0.2 mmol/l) and taken up by the bacteria, were compared. Fourier transform infrared (FTIR) spectroscopy was used for controlling the compositional features of whole cells. The results obtained show that in strain Sp7 (non-endophyte) the heavy metals induced an enhanced accumulation of polyester compounds (poly-3-hydroxybutyrate; PHB). In contrast, the response of the endophytic strain Sp245 to heavy metal uptake was found to be much less pronounced. These dissimilarities in their behaviour may be caused by different adaptation abilities of these strains to stress conditions owing to their different ecological status. It was also found that adding 0.2 mmol/l Cu2+ or Cd2+ in the culture medium resulted in noticeably reducing the levels of indole-3-acetic acid (IAA, auxin) produced by both the strains of the bacterium. This can directly affect the efficiency of associative plant-bacterial symbioses involving A. brasilense in heavy-metal-contaminated soil.
منابع مشابه
Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense
From the rhizoplane of Oryza sativa, vars. Morelos A-88 and Apatzingan, rice plantlets, we isolated two bacterial strains: Corynebacterium flavescens and Bacillus pumilus. By scanning electron microscopy, endophytic bacteria were frequently identified at the base of secondary roots, between the epidermis and the mucilaginous layer. Endophytes were also identified in the intercellular spaces whe...
متن کاملSurvival of Endophytic Diazotrophic Bacteria in Soil under Different Moisture Levels
The effects of soil moisture on the survival of three diazotrophic bacteria species (Azospirillum amazonense, Gluconacetobacter diazotrophicus and Azospirillum brasilense) were tested. Soil moisture had little influence on the survival of A. brasilense, which is considered a free-living species. On the other hand, increased soil moisture extended the survival of the endophytes A. amazonense and...
متن کاملSearch for endophytic diazotrophs in barley seeds
Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no ...
متن کاملInstrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques.
In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional ...
متن کاملBacteria for Plant Growth Promotion and Disease Management
Soil is an excellent niche of growth of many microorganisms: protozoa, fungi, viruses, and bacteria. Some microorganisms are able to colonize soil surrounding plant roots, the rhizosphere, making them come under the influence of plant roots (Hiltner 1904; Kennedy 2005). These bacteria are named rhizobacteria. Rhizobacteria are rhizosphere competent bacteria able to multiply and colonize plant r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2005